Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1296619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638830

RESUMO

The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.


Assuntos
Anti-Infecciosos , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Microbiota , Humanos , Extrato de Senna/análise , Extrato de Senna/farmacologia , Bactérias , Fezes/microbiologia , Sementes , Senosídeos/análise , Senosídeos/farmacologia , Anti-Infecciosos/farmacologia
2.
Front Cell Infect Microbiol ; 13: 1298392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145049

RESUMO

Introduction: In traditional Chinese medicine, the rhizome of Atractylodes macrocephala (Baizhu), the leaves of Isatis indigotica (Daqingye), and the flowers of Albizia julibrissin (Hehuanhua) have been used to treat gastrointestinal illnesses, epidemics, and mental health issues. Modern researchers are now exploring the underlying mechanisms responsible for their efficacy. Previous studies often focused on the impact of purified chemicals or mixed extracts from these plants on cells in tissue culture or in rodent models. Methods: As modulation of the human gut microbiome has been linked to host health status both within the gastrointestinal tract and in distant tissues, the effects of lipid-free ethanol extracts of Baizhu, Daqingye, and Hehuanhua on the human adult gut microbiome were assessed using Systemic Intestinal Fermentation Research (SIFR®) technology (n=6). Results and discussion: Baizhu and Daqingye extracts similarly impacted microbial community structure and function, with the extent of effects being more pronounced for Baizhu. These effects included decreases in the Bacteroidetes phylum and increases in health-related Bifidobacterium spp. and short chain fatty acids which may contribute to Baizhu's efficacy against gastrointestinal ailments. The changes upon Hehuanhua treatment were larger and included increases in multiple bacterial species, including Agathobaculum butyriciproducens, Adlercreutzia equolifaciens, and Gordonibacter pamelaeae, known to produce secondary metabolites beneficial to mental health. In addition, many of the changes induced by Hehuanhua correlated with a rise in Enterobacteriaceae spp., which may make the tested dose of this herb contraindicated for some individuals. Overall, there is some evidence to suggest that the palliative effect of these herbs may be mediated, in part, by their impact on the gut microbiome, but more research is needed to elucidate the exact mechanisms.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa
3.
J Agric Food Chem ; 71(48): 18735-18745, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988686

RESUMO

This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical scavenging capacities of RWE against HO•, ABTS•+, and DPPH• were assessed. Twenty-one compounds were tentatively identified in RWE, of which tuberonic acid hexoside was identified for the first time in rosemary. RWE dose of 33.3 mg of rosemary equivalents (RE)/mL suppressed the interaction between S-protein and ACE2 by 72.9%, while rosmarinic and caffeic acids at 3.3 µmol/mL suppressed the interaction by 36 and 55%, respectively. RWE at 5.0, 2.5, and 0.5 mg of RE/mL inhibited ACE2 activity by 99.5, 94.5, and 68.6%, respectively, while rosmarinic acid at 0.05 and 0.01 µmol/mL reduced ACE2 activity by 31 and 8%, respectively. RWE had a TPC value of 72.5 mg GAE/g. The results provide a mechanistic basis on which rosemary may reduce the risk of SARS-CoV-2 infection and the development of COVID-19.


Assuntos
COVID-19 , Rosmarinus , Humanos , Glicoproteína da Espícula de Coronavírus , Rosmarinus/química , Enzima de Conversão de Angiotensina 2 , Espectrometria de Massas em Tandem , SARS-CoV-2 , Fenóis/farmacologia , Radicais Livres , Ligação Proteica
4.
Int J Biol Macromol ; 249: 125922, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37482166

RESUMO

Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.


Assuntos
Embalagem de Alimentos , Polissacarídeos , Alimentos , Meio Ambiente , Compostos Fitoquímicos
5.
J Agric Food Chem ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021496

RESUMO

Honeysuckle (Lonicerae japonicae) has been used in functional tea products. The chemical compositions of the water and ethanol extracts of honeysuckle were examined in the present study, along with their potential in inhibiting SARS-CoV-2 spike protein binding to ACE2, suppressing ACE2 activity, and scavenging reactive free radicals. Thirty-six compounds were tentatively identified from the honeysuckle extracts using HPLC-MS/MS, with ten reported for the first time in honeysuckle. Both honeysuckle extracts inhibited the binding of SARS-CoV-2 spike protein to ACE2, as well as ACE2 activity. The ethanol extract exhibited a 100% inhibition on binding of the SARS-CoV-2 spike protein to ACE2 at 100 mg botanical equivalent/mL, whereas the water extract had a 65% binding inhibition at the same concentration. Furthermore, the water extract exhibited 90% ACE2 activity inhibition, which was stronger than that of the ethanol extract (62% inhibition) at the same botanical weight concentration. In addition, higher total phenolic contents and greater scavenging activities against hydroxyl (HO•), DPPH•, and ABTS•+ radicals were observed in the water extract than the ethanol extract counterpart on a dry botanical weight concentration basis. These findings suggest honeysuckle has the potential to reduce the risk of SARS-CoV-2 infection and the development of severe COVID-19 symptoms.

6.
J Agric Food Chem ; 71(12): 4890-4900, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940448

RESUMO

Cinnamon (Cinnamomum verum J. Presl) bark and its extracts are popular ingredients added to food and supplement products. It has various health effects, including potentially reducing the risk of coronavirus disease-2019 (COVID-19). In our study, the bioactives in cinnamon water and ethanol extracts were chemically identified, and their potential in suppressing SARS-CoV-2 spike protein-angiotensin-converting enzyme 2 (ACE2) binding, reducing ACE2 availability, and scavenging free radicals was investigated. Twenty-seven and twenty-three compounds were tentatively identified in cinnamon water and ethanol extracts, respectively. Seven compounds, including saccharumoside C, two emodin-glucuronide isomers, two physcion-glucuronide isomers, and two type-A proanthocyanidin hexamers, were first reported in cinnamon. Cinnamon water and ethanol extracts suppressed the binding of SARS-CoV-2 spike protein to ACE2 and inhibited ACE2 activity in a dose-dependent manner. Cinnamon ethanol extract had total phenolic content of 36.67 mg gallic acid equivalents (GAE)/g and free radical scavenging activities against HO• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) of 1688.85 and 882.88 µmol Trolox equivalents (TE)/g, which were significantly higher than those of the water extract at 24.12 mg GAE/g and 583.12 and 210.36 µmol TE/g. The free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) of cinnamon ethanol extract was lower than that of the water extract. The present study provides new evidence that cinnamon reduces the risk of SARS-CoV-2 infection and COVID-19 development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Cinnamomum zeylanicum , Enzima de Conversão de Angiotensina 2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucuronídeos , SARS-CoV-2 , Radicais Livres , Ácido Gálico , Etanol/química , Água/química , Ligação Proteica
7.
J Agric Food Chem ; 70(45): 14403-14413, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318658

RESUMO

COVID-19 is initiated by binding the SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) on host cells. Food factors capable of suppressing the binding between the SARS-CoV-2 spike protein and ACE2 or reducing the ACE2 availability through ACE2 inhibitions may potentially reduce the risk of SARS-CoV-2 infection and COVID-19. In this study, the chemical compositions of clove water and ethanol extracts were investigated, along with their potentials in suppressing SARS-CoV-2 spike protein-ACE2 binding, reducing ACE2 availability, and scavenging free radicals. Thirty-four compounds were tentatively identified in the clove water and ethanol extracts, with six reported in clove for the first time. Clove water and ethanol extracts dose-dependently suppressed SARS-CoV-2 spike protein binding to ACE2 and inhibited ACE2 activity. The water extract had stronger inhibitory effects than the ethanol extract on a dry weight basis. The clove water extract also had more potent free radical scavenging activities against DPPH• and ABTS•+ (536.9 and 3525.06 µmol TE/g, respectively) than the ethanol extract (58.44 and 2298.01 µmol TE/g, respectively). In contrast, the ethanol extract had greater total phenolic content (TPC) and relative HO• scavenging capacity (HOSC) values (180.03 mg GAE/g and 2181.08 µmol TE/g, respectively) than the water extract (120.12 mg GAE/g and 1483.02 µmol TE/g, respectively). The present study demonstrated the potential of clove in reducing the risk of SARS-CoV-2 infection and COVID-19 development.


Assuntos
COVID-19 , Syzygium , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , Syzygium/metabolismo , SARS-CoV-2 , Peptidil Dipeptidase A/química , Ligação Proteica , Sítios de Ligação , Radicais Livres , Água , Etanol
8.
J Agric Food Chem ; 70(29): 9039-9047, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35820155

RESUMO

The soluble free, soluble conjugated, and insoluble bound phenolic compounds in tomato seeds were extracted and analyzed using ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Total phenolic content (TPC) and free radical scavenging activities along with the antiproliferative effects against the human colorectal cancer cell line (HCT-116) were also examined for the soluble free, soluble conjugated, and insoluble bound phenolic fractions. 13, 7, and 10 compounds were tentatively identified in the soluble free, soluble conjugated, and insoluble bound phenolic fractions, respectively, including indole-3-acetic acid derivatives, flavonoids, phenolic acid, and tyramine-derived hydroxycinnamic acid amines. The insoluble bound phenolic fraction was observed to have a greater TPC value and stronger free radical scavenging activities against ABTS•+, DPPH•, and peroxyl radicals and a stronger inhibitory effect against HCT-116 cells compared with the soluble free and the soluble conjugated fractions. Soluble free and insoluble bound fractions significantly inhibited the proliferation of the HCT-116 cell line, and no antiproliferative effects were observed with the soluble conjugated fraction under the experimental conditions. The results may provide a foundation for future application of tomato seeds as nutraceuticals in dietary supplements and functional foods.


Assuntos
Solanum lycopersicum , Antioxidantes/química , Radicais Livres , Humanos , Solanum lycopersicum/metabolismo , Fenóis/química , Extratos Vegetais/química , Sementes/química
9.
Foods ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828811

RESUMO

The triacylglycerol (TAG) compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils were examined using ultra-performance convergence chromatography-quadrupole time-of-flight mass spectrometry (UPC2-QTOF MS). A total of 52, 53, 52, 59 and 58 TAGs were detected and tentatively identified from the blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils, respectively, according to their accurate molecular weight in MS1 and fragment ion profiles in MS2. OLL was the most abundant TAG in the blackberry, red raspberry and black raspberry seed oils. Furthermore, the fatty acid compositions of the five berry seed oils were directly determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the seed oils had total phenolic contents ranging 13.68-177.06 µmol GAE (gallic acid equivalent)/L oil, and significant scavenging capacities against DPPH, peroxyl, and ABTS+ radicals. These results indicated that the combination of UPC2 and QTOF MS could effectively identify and semi-quantify the TAGs compositions of the berry seed oils with sn-position information for the fatty acids. Understanding the TAGs compositions of these berry seed oils could improve the utilization of these potentially high nutritional value oils for human health.

10.
Foods ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829054

RESUMO

A microbial transglutaminase-induced cross-linked sodium caseinate (MSC) was used to stabilize zein nanoparticles, and the study was to investigate whether zein-MSC nanoparticles (zein-MSC NPs) can be used as an encapsulation carrier for resveratrol. A group of resveratrol-loaded zein-MSC nanoparticles (Res-zein-MSC NPs) with varying zein to Res mass ratios was first prepared. The particle sizes and zeta-potentials were in the ranges from 215.00 to 225.00 nm and from -29.00 to -31.00 mV. The encapsulation efficiency (EE) of Res was also influenced by the zein to Res mass ratio, and the encapsulated Res existed in an amorphous form. The major interactions between Res and zein-MSC NPs were hydrogen bonding and hydrophobic interaction. Furthermore, compared with free Res, the photo-stability and bioaccessibility of Res-zein-MSC NPs were significantly improved. The cellular studies also showed that Res-zein-MSC NPs exhibited lower cytotoxicity and desirable anti-inflammatory activity.

11.
Foods ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829113

RESUMO

BACKGROUND: Gelatin is a renewable, biodegradable, and inexpensive food polymer. The insufficient mechanical and functional properties of gelatin-based films (GBF) restrict their commercial application in food packaging. This work proposed a facile strategy to prepare an active and robust GBF that has the potential to be used in food packaging. METHODS: A strong and active GBF was prepared based on the principle of supramolecular chemistry via the incorporation of gallic acid (GA) as an active crosslinking agent and of microfibrillated cellulose (MFC) as a reinforcing agent. RESULTS: Under the appropriate concentration (1.0 wt%), MFC was evenly dispersed in a gelatin matrix to endow the film with low surface roughness and compact structure. Compared with the GF, the tensile strength and elongation at break of the resultant film reached 6.09 MPa and 213.4%, respectively, representing the corresponding improvement of 12.8% and 27.6%. Besides, a significantly improved water vapor barrier (from 3.985 × 10-8 to 3.894 × 10-8 g·m-1·Pa-1·s-1) and antioxidant activity (from 54.6% to 86.4% for ABTS radical scavenging activity; from 6.0% to 89.1% for DPPH radical scavenging activity) of GBFs were also observed after introducing the aromatic structure of GA and nano-/microfibrils in MFC. Moreover, the UV blocking performance and thermal stability of GGF and GGCFs were also enhanced. CONCLUSIONS: this work paves a promising way toward facile preparation of multifunctional GBFs that have great potential to be used in fabricating active and safe food packaging materials for food preservation.

12.
J Agric Food Chem ; 69(45): 13255-13259, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784718

RESUMO

This is the second special issue of the Journal of Agricultural and Food Chemistry (JAFC) that reviews the Agricultural and Food Chemistry Division (AGFD) technical program from a national meeting of the American Chemical Society (ACS). The 260th meeting was virtually held on August 17-20, 2020 as a result of the COVID-19 pandemic. Although it was the first-ever all online meeting in ACS history, a total of 311 abstracts were submitted to the AGFD technical program for oral and poster presentations and 34 technical sessions were held in 22 symposia, which covered a broad range of food and agricultural topics. The very first virtual ACS meeting was successful with the high quality of presentations, the number of online audiences, and seamless technology.


Assuntos
COVID-19 , Pandemias , Agricultura , Alimentos , Humanos , SARS-CoV-2 , Estados Unidos
13.
Talanta ; 235: 122775, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517635

RESUMO

A selective and sensitive colorimetric strategy for sulfide analysis was developed using GMP-Cu nanozymes with a laccase-like activity. This research discovered for the first time that sulfide could significantly enhance the catalytic activity of the GMP-Cu nanozymes by about 3.5 folds. The enhanced laccase activities duo to two reasons. First, Cu2+ in GMP-Cu nanozymes was reduced to Cu+. The other reason was the formation of Cu-S bond which was beneficial to accelerate the electron transfer rate to improve catalytic activity. Therefore, this method showed an excellent selectivity for sulfide. And it had a linear relationship in the sulfide concentration range of 0-220 µmol/L with a detection limit of 0.67 µmol/L. Furthermore, the proposed method was successfully applied to examine sulfide in the food systems. This new method may be used in sulfide detection to improve food quality and safety.


Assuntos
Lacase , Sulfetos , Colorimetria
14.
Foods ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208512

RESUMO

The Maillard reaction (MR) can affect the color, flavor, organoleptic properties, and nutritional value of food. Sometimes, MR is undesirable due to lowering the nutrient utilization, producing harmful neo-formed compounds, etc. In this case, it is necessary to control MR. Some chemical substances, such as phenolic acid, vitamins, aminoguanidine, and thiols extracted from garlic or onion, can effectively prevent MR. In this study, L-cysteine (L-cys) was found to inhibit MR after screening 10 sulfhydryl compounds by comparing their ability to mitigate browning. The inhibition mechanism was speculated to be related to the removal of 5-hydroxymethylfurfural (HMF), a key mid-product of MR. The reaction product of HMF and L-cys was identified and named as 1-dicysteinethioacetal-5-hydroxymethylfurfural (DCH) according to the mass spectrum and nuclear magnetic resonance spectrum of the main product. Furthermore, DCH was detected in the glutamic-fructose mixture after L-cys was added. In addition, the production of DCH also increased with the addition of L-cys. It also was worth noting that DCH showed no cell toxicity to RAW 264.7 cells. Moreover, the in vitro assays indicated that DCH had anti-inflammatory and antioxidant activities. In conclusion, L-cys inhibits MR by converting HMF into another adduct DCH with higher safety and health benefits. L-cys has the potential to be applied as an inhibitor to prevent MR during food processing and storage.

15.
J Agric Food Chem ; 69(15): 4542-4549, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843233

RESUMO

3-Monochloropropane 1,2-diol (3-MCPD) esters are toxicants formed during food thermal processing, and their testicular toxicities were widely reported. In this 90 day in vivo study, Sprague-Dawley rats were treated with 3-MCPD 1-monooleate at 10 and 100 mg/kg body weight (bw)/day or 1-monostearate at 15 and 150 mg/kg bw/day. Histological results indicated that testicular impairment was observed, and the level of serum testosterone was decreased dose dependently, while the levels of serum transforming growth factor beta and interferon-γ in rats' serum were increased dose dependently. To address the molecular mechanisms leading to testicular toxicities of 3-MCPD esters, testes samples were investigated with a mass spectrometry proteomic approach. The deregulated proteins affected by 3-MCPD esters include many enzymes related with the inflammatory necrosis pathways. While verifying the results in cellular level, 3-MCPD 1-monooleate and 3-MCPD 1-monostearate showed almost similar testicular cytotoxicity, and they could activate RIPK1 and MLKL pathways at the cellular level. All of these results showed the possible mechanisms about the toxicity of 3-MCPD esters in rats' testes and play a vital role in understanding the toxic effects of 3-MCPD esters both in vivo and in vitro.


Assuntos
Proteômica , alfa-Cloridrina , Animais , Ésteres , Contaminação de Alimentos/análise , Masculino , Ratos , Ratos Sprague-Dawley , Testículo , alfa-Cloridrina/toxicidade
16.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803186

RESUMO

In the current study, the chemical composition and total phenolic content of tomato seed flours, along with potential health beneficial properties, including free radical scavenging capacities, anti-inflammatory capacities, and gut microbiota profile modulation, were examined using two different batches. Eight compounds were identified in the tomato seed flour, including malic acid, 2-hydroxyadipic acid, salicylic acid, naringin, N-acetyl-tryptophan, quercetin-di-O-hexoside, kaempferol-di-O-hexoside, and azelaic acid. The total phenolic contents of tomato seed flour were 1.97-2.00 mg gallic acid equivalents/g. Oxygen radical absorbing capacities (ORAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacities (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging capacities (ABTS) were 86.32-88.57, 3.57-3.81, and 3.39-3.58 µmoles Trolox equivalents/g, respectively, on a per flour dry weight basis. The mRNA expression of the pro-inflammatory markers, interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), were dose-dependently suppressed by tomato seed flour extracts. The extracts altered five of the eight bacterial phyla and genera evaluated. The results may provide some scientific support for the use of tomato seed flour as value-added food ingredients.


Assuntos
Sementes/química , Solanum lycopersicum/química , Animais , Anti-Inflamatórios/análise , Antioxidantes/análise , Bactérias/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Fezes/microbiologia , Sequestradores de Radicais Livres/química , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenóis/química , Extratos Vegetais/química
17.
Food Chem ; 340: 128123, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010645

RESUMO

Six commercial red sorghum varieties (Tong Za 117, 141, 142 and 143, Chi Za 109 and 101) were investigated for their triacylglycerol (TAG) profiles, soluble and bound phenolics, and radical scavenging and anti-inflammatory activities. A total of 21 TAGs were identified in red sorghum oils for the first time. Total phenolic (TPC) and flavonoid contents (TFC) in the soluble or bound phenolic fractions differed among red sorghums. Significant correlation among TPC, TFC and DPPH radical scavenging activities was observed in both fractions. Except for caffeic acid, most of phenolic acids in red sorghums are in the bound form. Soluble 3-deoxyanthocyanidins contents (2.12-57.14 µg/g) were significantly higher than those of bound forms (0.01-0.18 µg/g) regardless of sorghum varieties and types of 3-deoxyanthocyanidins. Moreover, the stronger anti-inflammatory capacity of soluble phenolic fraction in Tong Za 117 correlated with its higher TPC, TFC and radical scavenging activity than those of its bound counterpart.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Sequestradores de Radicais Livres/farmacologia , Sorghum/química , Triglicerídeos/análise , Triglicerídeos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Antioxidantes/química , Ácidos Cafeicos/análise , Ácidos Cafeicos/química , Diterpenos/análise , Flavonoides/análise , Sequestradores de Radicais Livres/química , Hidrólise , Hidroxibenzoatos/análise , Hidroxibenzoatos/química , Camundongos , Fenóis , Extratos Vegetais/química , Óleos de Plantas/análise , Óleos de Plantas/química , Células RAW 264.7
18.
Foods ; 10(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374499

RESUMO

Wheat is the staple food for the world's major populations. However, chemical characters of geographically authentic wheat samples, especially for the lipids, have not been deeply studied. The present research aimed to investigate lipid compositions of Chinese wheat samples and clarify the major markers that contribute to the geographical differences. A total of 94 wheat samples from eight main wheat-producing provinces in China were evaluated to differentiate their lipid compositions. Based on the data collected from ultra-high-performance-liquid-chromatography tandem time-of-flight mass spectrometry (UPLC-Q/TOF MS), an optimized non-targeted lipidomic method was utilized for analyses. As the results, 62 lipid compounds, including fatty acids, phospholipids, galactolipids, triglycerides, diglycerides, alkylresorcinol, and ceramide were tentatively identified. Partial least squares discriminant analysis (PLS-DA) demonstrated a more satisfying performance in distinguishing wheat samples from different origins compared with principal component analysis (PCA). Further, the abundances of triglycerides and glycerophospholipids with more unsaturated fatty acids were found greater in wheat samples from northern origins of China, while more glycolipids and unsaturated fatty acids arose in southern original wheat samples. These findings describe the lipid profiles of wheat samples in China and could contribute to the quality and safety control for the wheat flour products.

19.
Food Sci Nutr ; 8(7): 3759-3767, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724638

RESUMO

Three different vegetable oils, including soybean, corn, and sunflower oils, were differentiated from olive oil by using ultra-performance convergence chromatography coupled with quadrupole time-of-flight (UPC2-QTOF MS) and multivariate data analysis based on their differences in triacylglycerol compositions. Then, olive oil was adulterated by adding these three vegetable oils in 1%, 0.75%, and 0.5% (v/v), and the adulterated olive oils were differentiated from the pure olive oils using the similar analytical strategies but different data processing approaches. After that, the representative markers in differentiating the adulterations were selected, and a mathematical model was created to detect the olive oil adulteration based on these specific markers. These results indicated that UPC2-QTOF MS coupled with multivariate data analysis is a sensitive and accurate method in detecting olive oil adulteration, even in 0.5% adulteration level (v/v). This method could be applied in olive oil adulteration detection, and potentially beneficial to the oil industry.

20.
J Agric Food Chem ; 68(46): 12769-12772, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32433871

RESUMO

This special issue of the Journal of Agricultural and Food Chemistry (JAFC) is a highlight of the Agricultural and Food Chemistry Division (AGFD) technical program at the 258th National Meeting of the American Chemical Society (ACS) in San Diego, CA, U.S.A., on August 25-29, 2019. At the conference, AGFD had 44 oral sessions at 19 symposia and 100 poster presentations with more than 400 abstract submissions. The technical program covered a broad range of current research and development topics in agricultural and food chemistry, including bioactive food components, diet and human nutrition, utilization of agricultural materials in food systems, food packaging, nanotechnology, and food safety, as well as several special award symposia. This is the first JAFC special issue that highlights an ACS national meeting program with joint efforts from AGFD.


Assuntos
Química Agrícola , Análise de Alimentos , Agricultura , Dieta , Manipulação de Alimentos , Humanos , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA